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Outline

1. Why control barrier functions (CBFs)?

2. How do they work and why do input limits make them hard to 
construct? 

3. How can we leverage tools from machine learning (neural networks, 
gradient-based training) to tackle this problem?
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Why CBFs?
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CBFs cover the expansive “set invariance”
class of safety problems 
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State space

Safe set

Set invariance: keep state inside safe set for all time 



CBFs cover the expansive “set invariance”
class of safety problems 
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Safe cobot-human interaction

Bipedal locomotion

Safe trajectory planning for AVs 



CBFs can offer provable, flexible safe control

Provable: has mathematical guarantees of safety

Flexible: acts as “safety layer” on top of any other policy
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How do CBFs work?
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CBFs are a “danger index”

• CBFs map each state to a scalar measure of danger
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=0: at safe set boundary

≤0: within safe set

Safe set



System provably safe if CBF never becomes positive

• A safe controller will decrease the CBF if it ever reaches 0 
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State space

Safe set



System provably safe if CBF never becomes positive

• A safe controller will decrease the CBF if it ever reaches 0 
•à Constraint on what inputs a safe controller can provide at 

boundary states
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State space

Safe set



CBF gives affine “input safety constraint”
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∀x ∈ ∂S, controller k(x) must satisfy φ̇(x, k(x)) ≤ 0.

Assuming a control-affine system, ẋ = f(x) + g(x)u:

φ̇(x, k(x)) = ∇xφ(x)
!ẋ = ∇xφ(x)

!f(x)
︸ ︷︷ ︸

scalar

+∇xφ(x)
!g(x)

︸ ︷︷ ︸

vector

k(x) ≤ 0

Note: constraint also 
state-dependent 

𝑢!

𝑢"

Example of constraint set in 
control space 
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𝜙

State axes 

Safe set

Boundary (0 level set)

𝑥!

𝑥"
𝑥#

Control spaces at different states

@ state 𝑥!

𝑢!

𝑢"

Set of safe inputs

𝑢!

𝑢"

@ state 𝑥"

𝑢!

𝑢"

@ state 𝑥#

CBF gives affine “input safety constraint”



“Input safety constraint” can be implemented as top 
layer in hierarchical controller

• This safety layer can operate on top of any controller, modifying its 
inputs minimally to comply with the safety constraint 
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Hierarchical controller

𝑢#$%&

𝑢

Projecting 𝑢 to 𝑢!"#$

min
usafe

1

2
‖u− usafe‖

2

2

φ̇(x, usafe) ≤

{

0 if x ∈ ∂S

∞ o.w.

u ∈ U

Safety layer: CBF quadratic program

Any 
nominal 
controller

x 𝑢 𝑢$%&'



CBFs sound great! So, what’s the catch?
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If CBF constructed in limit-blind way, we’ll run into 
issues later

• Where did the CBF even come from?

• In the absence of limits, CBF constructed from safety spec using 
known formula (functional)
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Example: limit-blind CBF for balancing cartpole
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𝐹 ∈ [−1, 1]

−𝜃̇−𝜃

Safety spec: ρ(x) = θ2 − (π/4)2

Limit-blind CBF:

φ = ρ+ kρ̇ = θ2 − (π/4)2 + kθθ̇
for any k > 0

Implicitly defined by a function to 
keep negative



For limit-blind CBF, sometimes no feasible input satisfies 
safety constraint…
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Control spaces at different states

@ state 𝑥!

𝑢!

𝑢"

Set of safe inputs

Input limit set

𝑢!

𝑢"

@ state 𝑥"

𝑢!

𝑢"

@ state 𝑥#

Sets don’t 
intersect!

𝜙

State axes 
Safe 
set

Boundary (0 level 
set)

𝑥!

𝑥"
𝑥#



In practice, can max out limits, but that doesn’t ensure 
safety

The best we can do is max out the limits trying to minimally violate the 
safety law.  
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Control space @ state 𝑥!

𝑢!

𝑢"

Set of safe inputs

Input limit set

“As safe as 
possible” 
input



Example: limit-blind CBF for balancing cartpole
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Our aim: find limit-friendly CBF

• It is valid to employ any CBF stricter than the original limit-blind CBF

• In most cases, there exists a limit-friendly CBF that is stricter
• Q: Why?
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State space

Safe set

Stricter safe set



Our aim: find limit-friendly CBF

• It is valid to employ any CBF stricter than the original limit-blind CBF

• In most cases, there exists a limit-friendly CBF that is stricter
• Q: Why? Can exclude irrecoverable states
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State space

Safe set

Stricter safe set



Example: balance cartpole
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Q: Where on the boundary are there 
irrecoverable states?

𝐹 ∈ [−1, 1]

−𝜃-𝜃̇

Safe set for 
limit-blind CBF



Example: balance cartpole
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Q: Where on the boundary are there 
irrecoverable states?

𝐹 ∈ [−1, 1]

−𝜃

Safe set for 
limit-blind CBF

-𝜃̇



Example: balance cartpole
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But the exact shape of a non-sat safe 
set is still hard to guess….

𝐹 ∈ [−1, 1]

−𝜃

A

? ?

-𝜃̇



Finding limit-friendly CBF = finding CBF that obeys 
complex design constraint
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A limit-friendly CBF has parameters θ that satisfy:

inf
u∈U

φ̇θ(x, u) ≤ 0 , ∀x ∈ ∂S

State space

Safe set



Our key ideas:

• Train generic neural CBF to satisfy design constraint! 
• Pose as min-max optimization
• Optimize using efficient learner-critic algorithm
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Learner Critic

Examples of saturation

Updated CBF



Unlike previous synthesis methods, ours scales to 
nonlinear, high-dimensional systems

• Synthesizing limit-friendly CBF is a hard problem, and the more 
general the system, the harder it is

• Previous works consider subclasses of nonlinear systems*
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Nonlinear systems

Polynomial systems
Euler-Lagrange systems

Simple 
nonlinear 
systems

*See references 1-9.



Recap

• CBF’s promise provable safety, but they’re hard to construct given 
input limits
• Input limits pose a tough constraint on CBF
• Our idea: train neural CBF to satisfy constraint, using learner-critic 

algorithm
• Our synthesis method is generic, scalable, automatic  
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Roadmap

• Posing synthesis as min-max optimization
• Our choice of loss function 
• Design of parametric (neural) CBF

• Using learner-critic optimization algorithm
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Posing the min-max optimization
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Loss function measures “how unsafe” at state x
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infu∈U φ̇θ(x, u) = φ̇θ(x, u
∗(x))

︸ ︷︷ ︸

L(x,θ)

≤ 0 , ∀x ∈ ∂S

Interpretation:
L(x, θ) ≤ 0: ∃ feasible safe input x
L(x, θ) > 0: measures “how unsafe” the “most safe” input is

Design constraint à loss function

Set of safe inputs

Input limit set
is the most safe input



Satisfying design constraint is equivalent to min-
max over loss
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Want θ such that inf
u∈U

φ̇(x, u) = L(x, θ) ≤ 0 , ∀x ∈ ∂S

→ θ such that max
x∈∂S

L(x, θ) ≤ 0

→ min
θ

max
x∈∂S

L(x, θ)

Q: How to interpret this?



Parametrizing the CBF to optimize over
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We choose a neural CBF, enabling generic, scalable 
synthesis

• Generic:
• Can express wide range of nonlinear functions 

• Scalable: 
• Can be efficiently trained on large inputs (high-dimensional systems)
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We design a neural CBF that is stricter than the 
limit-blind CBF

Q: how would we modify 𝜙 to shrink its safe set? 
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State space
𝜙 safe set: 𝑥 𝜙 𝑥 ≤ 0}

Stricter safe set



We design a neural CBF that is stricter than the 
limit-blind CBF

Q: how would we modify 𝜙 to shrink its safe set? 
Add a positive function to 𝜙. 
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State space
𝜙 safe set: 𝑥 𝜙 𝑥 ≤ 0}

(𝜙 + 𝑝) safe set: 𝑥 𝜙 𝑥 ≤ −𝑝}



We design a neural CBF that is stricter than the 
limit-blind CBF
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Let φ∗ = φ + p(nn(x)) with p(·) : →
+ and nn(·) a feedforward NN with

tanh activations.

p chosen depending on the type of safety specification, etc. For example, p =
softmax.

State space
𝜙 safe set: 𝑥 𝜙 𝑥 ≤ 0}

(𝜙 + 𝑝) safe set: 𝑥 𝜙 𝑥 ≤ −𝑝}



Designing an optimization algorithm
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Optimize min-max using learner-critic framework
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min
θ

max
x∈∂S

L(x, θ)

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



Learner and critic both use gradient descent
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Learner Critic

Example of saturation

Updated CBF

min
θ

max
x∈∂S

L(x, θ)
θ = θ − α ·∇θL(x̂

∗, θ)

x̂
∗

θ

max
x∈∂S

L(x, θ) with PGD



Techniques not covered:

• Simple trick to get a differentiable objective 
• Details of critic’s batch optimization and learner’s batch update
• “Warm-start” technique that boosts critic efficiency 
• Regularization term that encourages a larger safe set

But feel free to ask afterwards!
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Improves 
efficiency



Let’s see some examples.
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Learner-critic walkthrough for cartpole
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Iteration 0

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



Learner-critic walkthrough for cartpole

44

Iteration 0, critic’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



Learner-critic walkthrough for cartpole
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Iteration 0, learner’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



Learner-critic walkthrough for cartpole

46

Iteration 1, critic’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



Learner-critic walkthrough for cartpole

47

Iteration 1, learner’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



Learner-critic walkthrough for cartpole
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Iteration 2, critic’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



Learner-critic walkthrough for cartpole
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Iteration 2, learner’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)



After a while…
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Learner-critic walkthrough for cartpole
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Final iteration

After:
• ~200 iterations
• 15 minutes of training
• 10k cumulative counterexamples

Iteration 0



Observing our learned safe controller in action
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A harder example now.
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Balance pendulum on a quadcoptor

54*See reference 11 for video credits.



Balance pendulum on a quadcoptor

Q: which states do you expect the worst saturation at? 
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Given: nonlinear, 10D state, 
4D limited input system 

Safety spec: keep quadcoptor roll, pitch, and pendulum 
angle to vertical below 𝜋/4

*See reference 12 for figure credit. 



It’s much harder to reason about how to shrink this safe set!

Good news – we don’t have to. Just learn it.  
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Our method far outperforms a non-neural baseline
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M1 M2

Baseline (non-neural 
CBF)*

78.7 49.5-79.5

Ours 99.0 97.0-98.9

States with 
infeasible safe 
input

M1: % boundary states 
with feasible safe input

M2: % forward invariant 
rollouts

*See references 6, 10.



Why does our method outperform?
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Pe
nd

 p
itc

h

Pend pitch vel

Safe set diagram

Our 
learned 
safe set

Baseline 
safe set

φbaseline = (β)2·a1
− (π/4)2·a1 + a2 + a3ββ̇

where a1, a2, a3 are tuned parameters

φours = β2
− (π/4)2 + p(nn(β)) + kββ̇

where nn(·) and k have been learned using learner-critic

• Our CBF learned that pendulum pitch and pitch 
velocity must be bounded

• That requires terms of the form 𝛽4 and ̇𝛽4 in the 
CBF (safe set then requires 𝛽4 < 0 and ̇𝛽4 < 0)

No ̇𝛽! term: 
wrong function 

form! 

NN can learn a 
̇𝛽! term



Limitations + future work

• Learning required a state transformation first
• Maybe unnecessary with sinusoidal NN?

• Assumed known, deterministic dynamics 
• Extend to learning robust non-saturating CBF?  
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Final recap

• CBF are hard to synthesize under input limits 
• Neural CBF representation + efficient training algorithm = generic, 

scalable, automatic synthesis
• Addressing this problem makes CBFs more practically useful!  
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Questions?
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