
Safe control under input limits with
neural control barrier functions

Simin Liu
Dolan Lab, Intelligent Control Lab

1

Outline

1. Why control barrier functions (CBFs)?

2. How do they work and why do input limits make them hard to
construct?

3. How can we leverage tools from machine learning (neural networks,
gradient-based training) to tackle this problem?

2

Why CBFs?

3

CBFs cover the expansive “set invariance”
class of safety problems

4

State space

Safe set

Set invariance: keep state inside safe set for all time

CBFs cover the expansive “set invariance”
class of safety problems

5

Safe cobot-human interaction

Bipedal locomotion

Safe trajectory planning for AVs

CBFs can offer provable, flexible safe control

Provable: has mathematical guarantees of safety

Flexible: acts as “safety layer” on top of any other policy

6

How do CBFs work?

7

CBFs are a “danger index”

• CBFs map each state to a scalar measure of danger

8

=0: at safe set boundary

≤0: within safe set

Safe set

System provably safe if CBF never becomes positive

• A safe controller will decrease the CBF if it ever reaches 0

9

State space

Safe set

System provably safe if CBF never becomes positive

• A safe controller will decrease the CBF if it ever reaches 0
•à Constraint on what inputs a safe controller can provide at

boundary states

10

State space

Safe set

CBF gives affine “input safety constraint”

11

∀x ∈ ∂S, controller k(x) must satisfy φ̇(x, k(x)) ≤ 0.

Assuming a control-affine system, ẋ = f(x) + g(x)u:

φ̇(x, k(x)) = ∇xφ(x)
!ẋ = ∇xφ(x)

!f(x)
︸ ︷︷ ︸

scalar

+∇xφ(x)
!g(x)

︸ ︷︷ ︸

vector

k(x) ≤ 0

Note: constraint also
state-dependent

𝑢!

𝑢"

Example of constraint set in
control space

12

𝜙

State axes

Safe set

Boundary (0 level set)

𝑥!

𝑥"
𝑥#

Control spaces at different states

@ state 𝑥!

𝑢!

𝑢"

Set of safe inputs

𝑢!

𝑢"

@ state 𝑥"

𝑢!

𝑢"

@ state 𝑥#

CBF gives affine “input safety constraint”

“Input safety constraint” can be implemented as top
layer in hierarchical controller

• This safety layer can operate on top of any controller, modifying its
inputs minimally to comply with the safety constraint

13

Hierarchical controller

𝑢#$%&

𝑢

Projecting 𝑢 to 𝑢!"#$

min
usafe

1

2
‖u− usafe‖

2

2

φ̇(x, usafe) ≤

{

0 if x ∈ ∂S

∞ o.w.

u ∈ U

Safety layer: CBF quadratic program

Any
nominal
controller

x 𝑢 𝑢$%&'

CBFs sound great! So, what’s the catch?

14

If CBF constructed in limit-blind way, we’ll run into
issues later

• Where did the CBF even come from?

• In the absence of limits, CBF constructed from safety spec using
known formula (functional)

15

Example: limit-blind CBF for balancing cartpole

16

𝐹 ∈ [−1, 1]

−𝜃̇−𝜃

Safety spec: ρ(x) = θ2 − (π/4)2

Limit-blind CBF:

φ = ρ+ kρ̇ = θ2 − (π/4)2 + kθθ̇
for any k > 0

Implicitly defined by a function to
keep negative

For limit-blind CBF, sometimes no feasible input satisfies
safety constraint…

17

Control spaces at different states

@ state 𝑥!

𝑢!

𝑢"

Set of safe inputs

Input limit set

𝑢!

𝑢"

@ state 𝑥"

𝑢!

𝑢"

@ state 𝑥#

Sets don’t
intersect!

𝜙

State axes
Safe
set

Boundary (0 level
set)

𝑥!

𝑥"
𝑥#

In practice, can max out limits, but that doesn’t ensure
safety

The best we can do is max out the limits trying to minimally violate the
safety law.

18

Control space @ state 𝑥!

𝑢!

𝑢"

Set of safe inputs

Input limit set

“As safe as
possible”
input

Example: limit-blind CBF for balancing cartpole

19

Our aim: find limit-friendly CBF

• It is valid to employ any CBF stricter than the original limit-blind CBF

• In most cases, there exists a limit-friendly CBF that is stricter
• Q: Why?

20

State space

Safe set

Stricter safe set

Our aim: find limit-friendly CBF

• It is valid to employ any CBF stricter than the original limit-blind CBF

• In most cases, there exists a limit-friendly CBF that is stricter
• Q: Why? Can exclude irrecoverable states

21

State space

Safe set

Stricter safe set

Example: balance cartpole

22

Q: Where on the boundary are there
irrecoverable states?

𝐹 ∈ [−1, 1]

−𝜃-𝜃̇

Safe set for
limit-blind CBF

Example: balance cartpole

23

Q: Where on the boundary are there
irrecoverable states?

𝐹 ∈ [−1, 1]

−𝜃

Safe set for
limit-blind CBF

-𝜃̇

Example: balance cartpole

24

But the exact shape of a non-sat safe
set is still hard to guess….

𝐹 ∈ [−1, 1]

−𝜃

A

? ?

-𝜃̇

Finding limit-friendly CBF = finding CBF that obeys
complex design constraint

25

A limit-friendly CBF has parameters θ that satisfy:

inf
u∈U

φ̇θ(x, u) ≤ 0 , ∀x ∈ ∂S

State space

Safe set

Our key ideas:

• Train generic neural CBF to satisfy design constraint!
• Pose as min-max optimization
• Optimize using efficient learner-critic algorithm

26

Learner Critic

Examples of saturation

Updated CBF

Unlike previous synthesis methods, ours scales to
nonlinear, high-dimensional systems

• Synthesizing limit-friendly CBF is a hard problem, and the more
general the system, the harder it is

• Previous works consider subclasses of nonlinear systems*

27

Nonlinear systems

Polynomial systems
Euler-Lagrange systems

Simple
nonlinear
systems

*See references 1-9.

Recap

• CBF’s promise provable safety, but they’re hard to construct given
input limits
• Input limits pose a tough constraint on CBF
• Our idea: train neural CBF to satisfy constraint, using learner-critic

algorithm
• Our synthesis method is generic, scalable, automatic

28

Roadmap

• Posing synthesis as min-max optimization
• Our choice of loss function
• Design of parametric (neural) CBF

• Using learner-critic optimization algorithm

29

Posing the min-max optimization

30

Loss function measures “how unsafe” at state x

31

infu∈U φ̇θ(x, u) = φ̇θ(x, u
∗(x))

︸ ︷︷ ︸

L(x,θ)

≤ 0 , ∀x ∈ ∂S

Interpretation:
L(x, θ) ≤ 0: ∃ feasible safe input x
L(x, θ) > 0: measures “how unsafe” the “most safe” input is

Design constraint à loss function

Set of safe inputs

Input limit set
is the most safe input

Satisfying design constraint is equivalent to min-
max over loss

32

Want θ such that inf
u∈U

φ̇(x, u) = L(x, θ) ≤ 0 , ∀x ∈ ∂S

→ θ such that max
x∈∂S

L(x, θ) ≤ 0

→ min
θ

max
x∈∂S

L(x, θ)

Q: How to interpret this?

Parametrizing the CBF to optimize over

33

We choose a neural CBF, enabling generic, scalable
synthesis

• Generic:
• Can express wide range of nonlinear functions

• Scalable:
• Can be efficiently trained on large inputs (high-dimensional systems)

34

We design a neural CBF that is stricter than the
limit-blind CBF

Q: how would we modify 𝜙 to shrink its safe set?

35

State space
𝜙 safe set: 𝑥 𝜙 𝑥 ≤ 0}

Stricter safe set

We design a neural CBF that is stricter than the
limit-blind CBF

Q: how would we modify 𝜙 to shrink its safe set?
Add a positive function to 𝜙.

36

State space
𝜙 safe set: 𝑥 𝜙 𝑥 ≤ 0}

(𝜙 + 𝑝) safe set: 𝑥 𝜙 𝑥 ≤ −𝑝}

We design a neural CBF that is stricter than the
limit-blind CBF

37

Let φ∗ = φ + p(nn(x)) with p(·) : →
+ and nn(·) a feedforward NN with

tanh activations.

p chosen depending on the type of safety specification, etc. For example, p =
softmax.

State space
𝜙 safe set: 𝑥 𝜙 𝑥 ≤ 0}

(𝜙 + 𝑝) safe set: 𝑥 𝜙 𝑥 ≤ −𝑝}

Designing an optimization algorithm

38

Optimize min-max using learner-critic framework

39

min
θ

max
x∈∂S

L(x, θ)

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

Learner and critic both use gradient descent

40

Learner Critic

Example of saturation

Updated CBF

min
θ

max
x∈∂S

L(x, θ)
θ = θ − α ·∇θL(x̂

∗, θ)

x̂
∗

θ

max
x∈∂S

L(x, θ) with PGD

Techniques not covered:

• Simple trick to get a differentiable objective
• Details of critic’s batch optimization and learner’s batch update
• “Warm-start” technique that boosts critic efficiency
• Regularization term that encourages a larger safe set

But feel free to ask afterwards!

41

Improves
efficiency

Let’s see some examples.

42

Learner-critic walkthrough for cartpole

43

Iteration 0

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

Learner-critic walkthrough for cartpole

44

Iteration 0, critic’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

Learner-critic walkthrough for cartpole

45

Iteration 0, learner’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

Learner-critic walkthrough for cartpole

46

Iteration 1, critic’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

Learner-critic walkthrough for cartpole

47

Iteration 1, learner’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

Learner-critic walkthrough for cartpole

48

Iteration 2, critic’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

Learner-critic walkthrough for cartpole

49

Iteration 2, learner’s turn

Learner Critic

Examples of saturation, 𝑥∗

Updated CBF, 𝜃

x∗ = max
x∈∂S

L(x, θ)min
θ

L(x∗, θ)

After a while…

50

Learner-critic walkthrough for cartpole

51

Final iteration

After:
• ~200 iterations
• 15 minutes of training
• 10k cumulative counterexamples

Iteration 0

Observing our learned safe controller in action

52

A harder example now.

53

Balance pendulum on a quadcoptor

54*See reference 11 for video credits.

Balance pendulum on a quadcoptor

Q: which states do you expect the worst saturation at?

55

Given: nonlinear, 10D state,
4D limited input system

Safety spec: keep quadcoptor roll, pitch, and pendulum
angle to vertical below 𝜋/4

*See reference 12 for figure credit.

It’s much harder to reason about how to shrink this safe set!

Good news – we don’t have to. Just learn it.

56

Our method far outperforms a non-neural baseline

57

M1 M2

Baseline (non-neural
CBF)*

78.7 49.5-79.5

Ours 99.0 97.0-98.9

States with
infeasible safe
input

M1: % boundary states
with feasible safe input

M2: % forward invariant
rollouts

*See references 6, 10.

Why does our method outperform?

58

Pe
nd

 p
itc

h

Pend pitch vel

Safe set diagram

Our
learned
safe set

Baseline
safe set

φbaseline = (β)2·a1
− (π/4)2·a1 + a2 + a3ββ̇

where a1, a2, a3 are tuned parameters

φours = β2
− (π/4)2 + p(nn(β)) + kββ̇

where nn(·) and k have been learned using learner-critic

• Our CBF learned that pendulum pitch and pitch
velocity must be bounded

• That requires terms of the form 𝛽4 and ̇𝛽4 in the
CBF (safe set then requires 𝛽4 < 0 and ̇𝛽4 < 0)

No ̇𝛽! term:
wrong function

form!

NN can learn a
̇𝛽! term

Limitations + future work

• Learning required a state transformation first
• Maybe unnecessary with sinusoidal NN?

• Assumed known, deterministic dynamics
• Extend to learning robust non-saturating CBF?

59

Final recap

• CBF are hard to synthesize under input limits
• Neural CBF representation + efficient training algorithm = generic,

scalable, automatic synthesis
• Addressing this problem makes CBFs more practically useful!

60

Acknowledgments

I’m grateful to my advisors, Prof. Dolan and Prof. Liu, as well as the
other members of my committee, Prof. Held and Jaskaran Grover.

Also thanks to the members of the Dolan Lab and ICL, especially Qin
Lin, Tianhao Wei, Ravi Pandya, and also Prof. Andrea Bajcsy, Kate Shih,
Ashwin Khadke, Arpit Agarwal.

61

Questions?

62

References

1. C. Liu and M. Tomizuka. Control in a safe set: Addressing safety in human-robot interactions. In Dynamic Systems and Control Conference, volume
46209, page V003T42A003. American Society of Mechanical Engineers, 2014.

2. W. Zhao, T. He, and C. Liu. Model-free safe control for zero-violation reinforcement learning. In 5th Annual Conference on Robot Learning, 2021.

3. A. D. Ames, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs with application to adaptive cruise control. In 53rd IEEE
Conference on Decision and Control, pages 6271–6278. IEEE, 2014.

4. Y. Lyu, W. Luo, and J. M. Dolan. Probabilistic safety-assured adaptive merging control for autonomous vehicles. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 10764–10770. IEEE, 2021.

5. W. S. Cortez and D. V. Dimarogonas. Safe-by-design control for euler-lagrange systems. arXiv preprint arXiv:2009.03767, 2020.

6. T. Wei and C. Liu. Safe control with neural network dynamic models. arXiv preprint arXiv:2110.01110, 2021.
7. A. Clark. Verification and synthesis of control barrier functions. arXiv preprint arXiv:2104.14001, 2021.

8. S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-jacobi reachability: A brief overview and recent advances. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 2242–2253. IEEE, 2017.

9. M. Chen, S. Herbert, and C. J. Tomlin. Fast reachable set approximations via state decoupling disturbances. arXiv preprint arXiv:1603.05205, 2016.

10. W. Zhao, T. He, and C. Liu. Model-free safe control for zero-violation reinforcement learning.
In 5th Annual Conference on Robot Learning, 2021.

11. M. Hehn and R. D’Andrea. A flying inverted pendulum. In 2011 IEEE International Confer-
ence on Robotics and Automation, pages 763–770. IEEE, 2011

12. R. Figueroa, A. Faust, P. Cruz, L. Tapia, and R. Fierro. Reinforcement learning for balancing
a flying inverted pendulum. In Proceeding of the 11th World Congress on Intelligent Control
and Automation, pages 1787–1793. IEEE, 2014.

63

